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Abstract

This paper provides a method for computing the forward Radon transform and
the inverse Radon transform in the discrete case. Because the forward transform is
casted as a linear algebra operation, the inverse transform can be broken down into a
series of faster operations which make use of the fourier and inverse fourier transforms.
Using the Cooley-Tukey algorithm, these fourier transforms are improved for efficiency,
dramatically reducing the number of operations for bodies with large values of N , as
the order of operations is of order N log N , instead of N2.

In addition, this paper also references a program written in Python that computes
the forward and inverse Radon Transforms, as well as the transform Rm matrices
associated with these transforms.

This paper exclusively addresses the discrete case, and outlines an algorithm written
in Python for calculating the forward and inverse transforms of a given image.

1 Discrete Radon Transform

For simplicity, the Discrete Radon Transform will be abbreviated as DRT for the remainder
of this paper.

Below is a lattice representation of the original body:
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Let xl(n) be a 2-dimensional array, where −L < l < L and 0 ≤ n ≤ (N − 1). The quantity
(2L + 1) gives the total number of traces in the body, which can be thought of as the
thickness for simplicity. For a fixed time point n, x(n) is denoted by the following vector:

x(n) =


x−L(n)
· · ·
x0(n)
· · ·

xL(n)


We assume x(n) is defined ∀n ∈ Z, and that x(n) is a periodic vector sequence with period
N , so x(n) = x(N + n). Stacking the column vectors in a row from x(0) to x(N − 1)
produces a matrix with a one-to-one correspondence with the original lattice of the body,
with the entry xl,n corresponding to the lattice point at (l, n). The full matrix x is given
as follows:

x =

 | | · · · |
x(0) x(1) · · · x(N − 1)
| | · · · |


Thus, to recover the original structure of the body, the inversion procedure attempts to
recover these x(n) vectors. This procedure is nontrivial because x(n) cannot be directly
determined from the body in question. Instead, scans of the body, whose values can be
calculated, are used to recover the values in the x(n) vectors, thus determining the physical
makeup of the body in question. These scans are taken by (finish this section)

We define the forward Radon transform for x as follows:

y(n) =

m=M∑
m=−M

Rm · x(n+m) (1)

where 2M + 1 ≤ N and Rm are (2J + 1 + J ′)× (2L+ 1) transform matrices. J gives the
maximum slope of scans used in the inversion procedure, J ′ gives the number of row sums
used, and, for a fixed n, M gives the number of adjacent vectors to x(n) used to compute
the output vector, y(n). For a fixed time point n, y(n) is denoted by the following vector:

y(n) =


y−J(n)
· · ·
y0(n)
· · ·

yJ+J ′(n)


where J is the magnitude of the maximum slope involved in the scan, and J ′ is the number
of row sums taken in the scan. In the accompanying Python program, J ′ = (2L+1), which
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accounts for scanning each row in the original body. If J ′ = (2L + 1), then a (2L + 1)
identity matrix can be appended to the bottom of each Rm matrix.

Thus, y is a (2J + 1 + J ′)×N matrix, and in the special case involving all row scans,
y is a 2(J + L+ 1)×N matrix.

2 Inverse Radon Transform

The DRT is inverted by treating the inversion process as a linear algebra problem. Consider
the adjoint matrices R∗, defined as R∗i = adj(Ri) for i = −J, ..., J + J ′. The transform
given by R∗ is as follows:

z(n) =
m=M∑
m=−M

R∗−m · y(n+m) (2)

We now introduce the matrix H = R∗ ·R. The transform associated with H mimics the
operations of the DRT and adjoint transform. The transform is:

z(n) =
m=2M∑
m=−2M

Hm · x(n+m) (3)

where the Hm matrices are defined as follows:

Hm =

m=M−m∑
m′=−M

R∗m′ ·Rm′+m (4)

and
H−m = H∗m (5)

for m = 0, ..., 2M .
Now, we introduce a key lemma that includes the Discrete Fourier Transforms (DFTs)

of H and Z.

Lemma 1 If z(n) is as defined in equation (3), and x is a periodic vector sequence with
period N, then,

ẑ(k) = Ĥ(k) · x̂(k) (6)

for k = 0, 1, ..., N - 1. The DFTs of z, x, and H are defined as follows:

ẑ(k) =
n=N−1∑
n=0

z(n)e2πi(nk/N) (7)

x̂(k) =
n=N−1∑
n=0

x(n)e2πi(nk/N) (8)
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Ĥ(k) =

m=2M∑
m=−2M

Hme
−2πi(mk/N) (9)

Note: the difference in sign on the H is attributed to a physical property in seismology.

Proof (Beylkin) Given equation (3), we apply the DFT to both sides to get

ẑ(k) =
m=2M∑
m=−2M

Hm

n=N−1∑
n=0

z(n)e2πi(nk/N)

or

ẑ(k) =
m=2M∑
m=−2M

Hme
−2πi(mk/N)

ñ=N+m−1∑
ñ=m

z(ñ)e2πi(ñk/N)

The assumption that x(n) is periodic with period N implies that

ñ=m−1∑
ñ=0

z(ñ)e2πi(ñk/N) =
ñ=N+m−1∑

ñ=N

z(ñ)e2πi(ñk/N)

for m ≥ 1. A similar identity holds when m ≤ −1 by changing N on the right summation
to −N , and thus

ẑ(k) =

m=2M∑
m=−2M

Hme
−2πi(mk/N)

n=N−1∑
n=0

x(n)e2πi(nk/N)

which is exactly Lemma 1 in equation (6).

Because x(n) is a real vector sequence, DFT of x contains complex conjugation. Namely,
x̂(N − k) = ¯̂x(k), for k = 0, 1, ..., N − 1. This means only values of k in the range [0, N/2]
if N is even, [0, (N − 1)/2] if N is odd, must be considered. This dramatically cuts down
the number of computations, especially for large values of N This begins the discussion of
invertible frequencies, k.

Definition The DRT given in equation (1) is uniquely invertible within the normalized
frequency band [kmin/N, kmax/N ] for 0 ≤ kmin/N and kmax/N ≤ .5 if ∀k = kmin, ..., kmax

det(Ĥ(k)) 6= 0 (10)

In summary, the algorithm for inverting the DRT, y, of a given body, x, given transform
matrices R is

1. Compute the R∗ adjoint transform matrices of R ∀m
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2. Find the adjoint transform of y using the formula

z(n) =

m=M∑
m=−M

R∗−m · y(n+m)

3. Compute the (2L + 1) × (2L + 1) Hm matrices from the R and R∗ matrices for
m = −2M, ..., 2M

4. Compute the DFTs of z and H, ẑ and Ĥ

5. Compute Ĥ−1(k) · ẑ(k) = x̂(k) for invertible values of k

6. Compute the IDFT of x̂(k) for k = 0, 1, ..., (N − 1) to recover the original image, x

3 Python Code

3.1 Rm Transform Matrix Maker

This first function, Rm, in this program takes two parameters, J and L, and J, L ∈ Z. L
is related to the number of distinct traces of the body, as 2L+ 1 gives the total number of
traces. J gives the bound for the maximum and minimum magnitude of the slopes, for a
total of 2J + 1 slopes ranging from −J to J . With these definitions, M = J ×L, where M
is the number of adjacent vectors used on each side of the given vector for the set of scans.
Thus, 2M + 1 gives the total number of vectors used for each set of scans, and it follows
that there are 2M + 1 transform matrices, indexed as follows: Rm,m = −M, ..., 0, ...,M .
These matrices are stored as a list of arrays, seen in the code as ”R”, with R[0] = R−M ,
..., R[M ] = R0, ..., R[2M ] = RM . This ”R” list is the returned product of the Rm function.

The Rm function implements the following formula

(Rm)j,l = δm,jl (11)

where the second subscript of δ is the product of j and l. The Rm matrices have special
indexing for rows and columns: rows are indexed top to bottom from −J to J , columns
are indexed left to right from −L to L. The equation determining δ is

δm,jl =

{
1 if m = j × l
0 otherwise

(12)

Equation (12) is employed for each Rm matrix, m = −M, ...,M . Once all entries are filled,
the Rm function then returns the transform matrices, properly indexed as a list of arrays.
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The program also contains a second function for outputting transform Rm matrices,
called Rmrows. It takes the same slope and index parameters as the first Rm function, and
its first step is identical to Rm’s. The key difference in Rmrows comes next, in the addition
of row scans. This function assumes all row scans are taken, so each Rm matrix will have
(2J + 1) + (2L+ 1) rows, but the same (2L+ 1) number of columns as before. These row
scans are accounted for by simply appending a (2L+ 1)× (2L+ 1) identity matrix to the
bottom of each Rm matrix. Rmrows returns a properly indexed list of 2(L+J+1)×(2L+1)
arrays.

3.2 Discrete Radon Transform

This program contains one function, frt, which takes two parameters, a and R. The a is the
body to be transformed, and R is a list of arrays containing the transform matrices. For
the function to work, the number of columns in the input array a must equal or exceed the
number of transform matrices, staying consistent with the condition that (2M + 1) ≤ N .
After this check, the program uses equation (1) to calculate the transformed body, y(n)
for n = 0, 1, ..., N − 1. Once complete, the function returns y.

3.3 Inverse Radon Transform

This program contains one function, ifrt, which takes two parameters: the transformed
body y, and a list of arrays R of the transform matrices used in the operation.

First, the function computes the adjoint R∗ matrices, and stores them in an array
called ”Rstar”. Once computed, the function then uses equation (2) to calculate the
adjoint transform of y, and stores it as z. Next, equation (4) is used to calculate Hm for
m = 0, ..., 2M , then Hm for m = −2M, ...,−1 are calculated by equation (5).

The next step computes the DFTs of z and H. ẑ is calculated by the fast fourier
transform in the numpy library, which uses the Tukey-Cooley algorithm to reduce the
total number of computations. In the current version of the program, Ĥ is calculated by
means of a brute force fourier transform, as the numpy algorithm produced the incorrect
output for the 3 dimensional array, H. In addition, though only values of k = 0, ..., N/2
should be needed to successfully complete the transform, incorrect results were obtained
when using this limited band of frequencies. As a consequence, the less efficient, brute
force, complete computation of Ĥ is used.

Once ẑ and Ĥ are computed, the program uses the key lemma (6) to calculate x̂ for
invertible frequencies of k. If Ĥ(k) is noninvertible, an error message with the problematic
k frequency is printed to the console, and the x̂ in question is simply filled with a column
of zeroes. This process is carried out for all values of k.

Finally, x is computed by taking the inverse fourier transform of x̂. Like the fourier
transform of z, this inversion also makes use of the numpy fast fourier transform library.
Because the inverse fourier transform is normalized, x̂ must be multiplied by a factor of N
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to receive the desired output.

4 Discussion and Open problems

Though this paper outlines an algorithm for calculating the forward and inverse DRTs of a
given body, this algorithm has not been optimized for maximum efficiency. Open questions
for maximizing this efficiency include:

• Is the 0 frequency recoverable without row scans?

• What is the smallest number of scans needed for successful inversion?

• Can the Ĥ matrices be computed directly from R and R∗ matrices, without compu-
tation of the H matrices?

• Optimizing the computation of Ĥ in the current program, by successfully implement-
ing the FFT

• Can one create a user friendly interface to select scans with unusual shapes (v’s, x’s,
odd shapes) and output the corresponding transform R matrices?

.
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